School bus pollution and changes in the air quality at schools: a case study

J Environ Monit. 2009 May;11(5):1037-42. doi: 10.1039/b819458k. Epub 2009 Feb 27.

Abstract

Millions of children attending US schools are exposed to traffic-related air pollutants, including health-relevant ultrafine aerosols generated from school buses powered with diesel fuel. This case study was established in a midwestern (USA) metropolitan area to determine the concentration and elemental composition of aerosol in the vicinity of a public school during morning hours when the bus traffic in and out of the adjacent depot was especially intense. Simultaneous measurements were performed at a control site. The ambient aerosol was first characterized in real time using a particle size selective aerosol spectrometer and then continuously monitored at each site with a real-time non-size-selective instrument that detected particles of 20 nm to >1 microm. In addition, air samples were collected with PM2.5 Harvard Impactors and analyzed for elemental composition using the X-ray fluorescence technique (for 38 elements) and thermal-optical transmittance (for carbon). The measurements were conducted during two seasons: in March at ambient temperature around 0 degrees C and in May when it ranged mostly between 10 and 20 degrees C. The particle number concentration at the test site exhibited high temporal variability while it was time independent at the control site. Overall, the aerosol particle count at the school was 4.7 +/- 1.0 times (March) and 2.2 +/- 0.4 times (May) greater than at the control site. On some days, a 15 min-averaged particle number concentration showed significant correlation with the number of school bus arrivals and departures during these time intervals. On other days, the correlation was less than statistically significant. The 3 h time-averaged particle concentrations determined in the test site on days when the school buses operated were found to be more than two-fold greater (on average) than those measured on bus-free days at the same location, and this difference was statistically significant. Overall, the data suggest a possible association between the number of detected aerosol particles and the school bus traffic intensity. Analysis of the filter samples collected at the school site between 6:00 and 9:00 AM revealed higher concentrations of elemental carbon as compared to the control site (2.8 +/- 0.9 times in March and 3.1 +/- 1.1 times in May). The data collected in this case study suggest that school buses significantly contribute to exposure of children to aerosol pollutants (including diesel exhaust particles) in the school vicinity.

MeSH terms

  • Air Pollutants / analysis*
  • Child
  • Environmental Exposure
  • Fluorescence
  • Humans
  • Motor Vehicles*
  • Particle Size
  • Schools*
  • Vehicle Emissions*

Substances

  • Air Pollutants
  • Vehicle Emissions