The (+)- and (-)-gossypols potently inhibit both 3beta-hydroxysteroid dehydrogenase and 17beta-hydroxysteroid dehydrogenase 3 in human and rat testes

J Steroid Biochem Mol Biol. 2009 May;115(1-2):14-9. doi: 10.1016/j.jsbmb.2009.02.004. Epub 2009 Feb 14.

Abstract

Androgen deprivation is commonly used in the treatment of metastatic prostate cancer. The (-)-gossypol enantiomer has been demonstrated as an effective inhibitor of Bcl-2 in the treatment of prostate cancer. However, the mechanism of gossypol as an inhibitor of androgen biosynthesis is not clear. The present study compared (+)- and (-)-gossypols in the inhibition of 3beta-hydroxysteroid dehydrogenase (3beta-HSD) and 17beta-HSD isoform 3 (17beta-HSD3) in human and rat testes. Gossypol enantiomers were more potent inhibitors of rat 3beta-HSD with IC(50)s of approximately 0.2microM compared to 3-5microM in human testes. However, human 17beta-HSD3 was more sensitive to inhibition by gossypol enantiomers, with IC(50)s of 0.36+/-0.09 and 1.13+/-0.12 for (-)- and (+)-gossypols, respectively, compared to 3.43+/-0.46 and 10.93+/-2.27 in rat testes. There were species- and enantiomer-specific differences in the sensitivity of the inhibition of 17beta-HSD3. Gossypol enantiomers competitively inhibited both 3beta-HSD and 17beta-HSD3 by competing for the cofactor binding sites of these enzymes. Gossypol enantiomers, fed orally to rats (20mg/kg), inhibited 3beta-HSD but not 17beta-HSD3. This finding was consistent with the in vitro data, in which rat 3beta-HSD was more sensitive to gossypol inhibition than rat 17beta-HSD3. As the reverse was true for the human enzymes, gossypol might be useful for treating metastatic prostate cancer.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • 17-Hydroxysteroid Dehydrogenases / antagonists & inhibitors*
  • Animals
  • Antineoplastic Agents / pharmacology
  • Binding, Competitive
  • Gossypol / pharmacology*
  • Humans
  • Inhibitory Concentration 50
  • Male
  • Rats
  • Species Specificity
  • Testis / enzymology*
  • Testis / metabolism

Substances

  • Antineoplastic Agents
  • 17-Hydroxysteroid Dehydrogenases
  • 17beta-hydroxysteroid dehydrogenase type 3
  • 3 (or 17)-beta-hydroxysteroid dehydrogenase
  • Gossypol