Plasma growth hormones, P300 event-related potential and test of variables of attention (TOVA) are important neuroendocrinological predictors of early cognitive decline in a clinical setting: evidence supported by structural equation modeling (SEM) parameter estimates

Age (Dordr). 2007 Sep;29(2-3):55-67. doi: 10.1007/s11357-007-9030-3. Epub 2007 May 12.

Abstract

A review of the literature in both animals and humans reveals that changes in sex hormone have often been associated with changes in behavioral and mental abilities. Previously published research from our laboratory, and others, provides strong evidence that P300 (latency) event-related potential (ERP), a marker of neuronal processing speed, is an accurate predictor of early memory impairment in both males and females across a wide age range. It is our hypothesis, given the vast literature on the subject, that coupling growth hormones (insulin-like growth factor-I, (IGF-I) and insulin-like growth factor binding protein 3 (IGF-BP3)), P300 event-related potential and test of variables of attention (TOVA) are important neuroendocrinological predictors of early cognitive decline in a clinical setting. To support this hypothesis, we utilized structural equation modeling (SEM) parameter estimates to determine the relationship between aging and memory, as mediated by growth hormone (GH) levels (indirectly measured through the insulin-like growth factor system), P300 latency and TOVA, putative neurocognitive predictors tested in this study. An SEM was developed hypothesizing a causal directive path, leading from age to memory, mediated by IGF-1 and IGF-BP3, P300 latency (speed), and TOVA decrements. An increase in age was accompanied by a decrease in IGF-1 and IGF-BP3, an increase in P300 latency, a prolongation in TOVA response time, and a decrease in memory functioning. Moreover, independent of age, decreases in IGF-1 and IGF-BP3, were accompanied by increases in P300 latency, and were accompanied by increases in TOVA response time. Finally, increases in P300 latency were accompanied by decreased memory function, both directly and indirectly through mediation of TOVA response time. In summary, this is the first report utilizing SEM to reveal the finding that aging affects memory function negatively through mediation of decreased IGF-1 and IGF-BP3, and increased P300 latency (delayed attention and processing speed).