QM/MM calculation of solvent effects on absorption spectra of guanine

J Comput Chem. 2010 Jan 15;31(1):90-106. doi: 10.1002/jcc.21233.

Abstract

Electronic spectra of guanine in the gas phase and in water were studied by quantum mechanical/molecular mechanical (QM/MM) methods. Geometries for the excited-state calculations were extracted from ground-state molecular dynamics (MD) simulations using the self-consistent-charge density functional tight binding (SCC-DFTB) method for the QM region and the TIP3P force field for the water environment. Theoretical absorption spectra were generated from excitation energies and oscillator strengths calculated for 50 to 500 MD snapshots of guanine in the gas phase (QM) and in solution (QM/MM). The excited-state calculations used time-dependent density functional theory (TDDFT) and the DFT-based multireference configuration interaction (DFT/MRCI) method of Grimme and Waletzke, in combination with two basis sets. Our investigation covered keto-N7H and keto-N9H guanine, with particular focus on solvent effects in the low-energy spectrum of the keto-N9H tautomer. When compared with the vertical excitation energies of gas-phase guanine at the optimized DFT (B3LYP/TZVP) geometry, the maxima in the computed solution spectra are shifted by several tenths of an eV. Three effects contribute: the use of SCC-DFTB-based rather than B3LYP-based geometries in the MD snapshots (red shift of ca. 0.1 eV), explicit inclusion of nuclear motion through the MD snapshots (red shift of ca. 0.1 eV), and intrinsic solvent effects (differences in the absorption maxima in the computed gas-phase and solution spectra, typically ca. 0.1-0.3 eV). A detailed analysis of the results indicates that the intrinsic solvent effects arise both from solvent-induced structural changes and from electrostatic solute-solvent interactions, the latter being dominant.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Guanine / chemistry*
  • Molecular Conformation*
  • Molecular Dynamics Simulation
  • Quantum Theory*
  • Solvents / chemistry*

Substances

  • Solvents
  • Guanine