The robustness of ecological indicators to detect long-term changes in the macrobenthos of estuarine systems

Mar Environ Res. 2009 Jul;68(1):25-36. doi: 10.1016/j.marenvres.2009.04.001. Epub 2009 Apr 14.

Abstract

Accurate and reliable benthic quality indicators are in great demand following the recent developments and the strict time schedule for implementing the European Water Framework Directive. The Mondego estuary has experienced a progressive deterioration during the 1990s, followed by a partial ecological recovery due to restoration measures in 1997/1998. We have used the estuary as a model system to test the performance and robustness of a set of ecological indicators in highlighting the changes in the ecological state of intertidal areas. Over a period of 17 years (1985-2002), we calculated Margalef, Shannon-Wiener, Berger-Parker, Taxonomic Distinctness measures, AZTI's Marine Biotic Index, Infaunal Trophic Index, and Eco-Exergy based indices and tested differences across periods characterised by different anthropogenic disturbance. We combined temporal data within three periods: before, during and after disturbance, based on progressive information on the changes in the extended type of anthropogenic disturbance. Indices were then compared with biological and abiotic descriptors (macroalgae, macrophytes, benthic macrofauna, nutrients concentration, sediment grain size and total organic carbon). We found great disparity in the indicators ability to capture temporal changes, showing distinct performances at each site. At the Zostera noltii site, only Margalef, Total Taxonomic Distinctness and the thermodynamically based indices captured temporal changes, despite giving higher values during the disturbance period. At the bare sediment site, Taxonomic Distinctness, ITI, Shannon-Wiener, Berger-Parker, AMBI and the TBI were able to distinguish between periods, in agreement with the differences observed analysing the macrobenthic assemblages. Furthermore, Taxonomic Distinctness was not robust enough to detect any temporal or spatial change. We thus suggest further research to understand the behaviour of ecological indicators, in view of their crucial importance for the management and protection of marine coastal areas.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biodiversity
  • Biomass
  • Computer Simulation
  • Ecosystem*
  • Environmental Monitoring
  • Models, Biological
  • Reproducibility of Results
  • Rivers*
  • Time