The pace of evolution across fitness valleys

J Theor Biol. 2009 Aug 7;259(3):613-20. doi: 10.1016/j.jtbi.2009.04.011. Epub 2009 Apr 24.

Abstract

How fast does a population evolve from one fitness peak to another? We study the dynamics of evolving, asexually reproducing populations in which a certain number of mutations jointly confer a fitness advantage. We consider the time until a population has evolved from one fitness peak to another one with a higher fitness. The order of mutations can either be fixed or random. If the order of mutations is fixed, then the population follows a metaphorical ridge, a single path. If the order of mutations is arbitrary, then there are many ways to evolve to the higher fitness state. We address the time required for fixation in such scenarios and study how it is affected by the order of mutations, the population size, the fitness values and the mutation rate.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adaptation, Physiological / genetics
  • Biological Evolution*
  • Computer Simulation*
  • Genetics, Population*
  • Humans
  • Mutation
  • Population Density
  • Population Dynamics
  • Stochastic Processes*