Achromatic digital speckle pattern interferometer with constant radial in-plane sensitivity by using a diffractive optical element

Appl Opt. 2009 Apr 20;48(12):2275-81. doi: 10.1364/ao.48.002275.

Abstract

We report on a digital speckle pattern interferometer that applies a binary diffractive optical element (DOE) to generate double illumination and radial in-plane sensitivity. The application of the DOE ensures independence on the wavelength of the laser used as an illumination source. Furthermore, in-plane sensitivity only depends on the grating period of the DOE. An experimental setup was built allowing the measurement of a set of radial in-plane displacement fields either using a red laser as a light source or a green one. When displacement fields computed from the measured optical phase maps obtained with a red or a green laser were compared, two main results were observed: (a) deviations between mean values ranged only up to 7 nm and (b) phase maps presented the same amount of fringes. In addition, phase maps measured with the red laser were processed as they were obtained with green light. For this case, deviations have ranged only up to 0.5 nm. On the other hand, a set of measurements performed changing the DOE by a conical mirror showed clearly that radial in-plane sensitivity increased when the red laser was changed by the green one.