Spatial pattern and heterogeneity of soil organic carbon and nitrogen in sand dunes related to vegetation change and geomorphic position in Horqin Sandy Land, Northern China

Environ Monit Assess. 2010 May;164(1-4):29-42. doi: 10.1007/s10661-009-0872-2. Epub 2009 Apr 8.

Abstract

To assesses the effect of geomorphology, topography, and vegetation changes on spatial pattern of soil organic carbon (C) and total nitrogen (N) in sand dunes, we used the quantitative methods to examine the spatial heterogeneity of vegetation cover, soil organic C, and total N in an 11-year naturally restored mobile dune (RMD11) and a 20-year naturally restored mobile dune (RMD20) that had been fenced to exclude grazing in Horqin Sandy Land, northern China. Our results showed that the vegetation cover, plant density, species number and diversity, soil organic C, and total N increased from RMD11 to RMD20 and increased from the 50 x 50-m plot (crest) to the 100 x 100-m plot (slope) in each dune. Geostatistical analysis showed that the spatial structural variance accounted for the largest proportion of the total sample variance in vegetation cover, soil organic C, and total N in each dune plot. Calculated spatial autocorrelation ranges of vegetation cover, soil organic C, and total N increased from RMD11 to RMD20, indicating that longer time since vegetation restoration results in a more homogeneous distribution of vegetation cover, soil organic C, and total N in sand dunes. In addition, the spatial continuity of vegetation cover, soil organic C, and total N decreased from the 50 x 50-m plot (crest) to the 100 x 100-m plot (slope) in each dune. These results suggest that the spatial distribution of soil organic C and total N in sand dunes is associated closely with geomorphic position related to the dune crest and slope, relative elevation of sampling site, and vegetation cover. Understanding the principles of this relationship between them may guide strategies for the conservation and management of semiarid dune ecosystems.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon / analysis*
  • China
  • Nitrogen / analysis*
  • Plants*
  • Soil / analysis*
  • Species Specificity

Substances

  • Soil
  • Carbon
  • Nitrogen