Kinetics of CO(2) fluxes outgassing from champagne glasses in tasting conditions: the role of temperature

J Agric Food Chem. 2009 Mar 11;57(5):1997-2003. doi: 10.1021/jf803278b.

Abstract

Measurements of CO(2) fluxes outgassing from a flute poured with a standard Champagne wine initially holding about 11 g L(-1) of dissolved CO(2) were presented, in tasting conditions, all along the first 10 min following the pouring process. Experiments were performed at three sets of temperature, namely, 4 degrees C, 12 degrees C, and 20 degrees C, respectively. It was demonstrated that the lower the champagne temperature, the lower CO(2) volume fluxes outgassing from the flute. Therefore, the lower the champagne temperature, the lower its progressive loss of dissolved CO(2) concentration with time, which constitutes the first analytical proof that low champagne temperatures prolong the drink's chill and helps retains its effervescence. A correlation was also proposed between CO(2) volume fluxes outgassing from the flute poured with champagne and its continuously decreasing dissolved CO(2) concentration. Finally, the contribution of effervescence to the global kinetics of CO(2) release was discussed and modeled by the use of results developed over recent years. The temperature dependence of the champagne viscosity was found to play a major role in the kinetics of CO(2) outgassing from a flute. On the basis of this bubbling model, the theoretical influence of champagne temperature on CO(2) volume fluxes outgassing from a flute was discussed and found to be in quite good accordance with our experimental results.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Carbon Dioxide / chemistry*
  • Humans
  • Kinetics
  • Taste*
  • Temperature
  • Wine / analysis*

Substances

  • Carbon Dioxide