Directed self-assembly of block copolymers for nanolithography: fabrication of isolated features and essential integrated circuit geometries

ACS Nano. 2007 Oct;1(3):168-75. doi: 10.1021/nn700164p.

Abstract

Self-assembling block copolymers are of interest for nanomanufacturing due to the ability to realize sub-100 nm dimensions, thermodynamic control over the size and uniformity and density of features, and inexpensive processing. The insertion point of these materials in the production of integrated circuits, however, is often conceptualized in the short term for niche applications using the dense periodic arrays of spots or lines that characterize bulk block copolymer morphologies, or in the long term for device layouts completely redesigned into periodic arrays. Here we show that the domain structure of block copolymers in thin films can be directed to assemble into nearly the complete set of essential dense and isolated patterns as currently defined by the semiconductor industry. These results suggest that block copolymer materials, with their intrinsically advantageous self-assembling properties, may be amenable for broad application in advanced lithography, including device layouts used in existing nanomanufacturing processes.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Microscopy, Electron, Scanning
  • Nanotechnology*
  • Polymers / chemical synthesis*
  • Polymers / chemistry*
  • Surface Properties

Substances

  • Polymers