Systemic delivery of umbilical cord blood cells for stroke therapy: a review

Restor Neurol Neurosci. 2009;27(1):41-54. doi: 10.3233/RNN-2009-0460.

Abstract

Purpose: This review paper summarizes relevant studies, discusses potential mechanisms of transplanted cell-mediated neuroprotection, and builds a case for the need to establish outcome parameters that are critical for transplantation success. In particular, we outline the advantages and disadvantages of systemic delivery of human umbilical cord blood (HUCB) cells in the field of cellular transplantation for treating ischemic stroke.

Methods: A MEDLINE/PubMed systematic search of published articles in peer-reviewed journals over the last 25 years was performed focusing on the theme of HUCB as donor graft source for transplantation therapy in neurological disorders with emphasis on stroke.

Results: Ischemic stroke remains a leading cause of human death and disability. Although stroke survivors may gain spontaneous partial functional recovery, they often suffer from sensory-motor dysfunction, behavioral/neurological alterations, and various degrees of paralysis. Currently, limited clinical intervention is available to prevent ischemic damage and restore lost function in stroke victims. Stem cells from fetal tissues, bone marrow, and HUCB has emerged in the last few years as a potential cell transplant cell source for ischemic stroke, because of their capability to differentiate into multiple cell types and the possibility that they may provide trophic support for cell survival, tissue repair, and functional recovery.

Conclusion: A growing number of studies highlight the potential of systemic delivery of HUCB cells as a novel therapeutic approach for stroke. However, additional preclinical studies are warranted to reveal the optimal HUCB transplant regimen that is safe and efficacious prior to proceeding to large-scale clinical application of these cells for stroke therapy.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Cord Blood Stem Cell Transplantation / methods*
  • Databases, Factual / statistics & numerical data
  • Fetal Blood / cytology*
  • Humans
  • Stroke / therapy*