Loss of betaglycan contributes to the malignant properties of human granulosa tumor cells

Mol Endocrinol. 2009 Apr;23(4):539-48. doi: 10.1210/me.2008-0300. Epub 2009 Jan 22.

Abstract

Betaglycan is a type III TGFbeta receptor that modulates cellular sensitivity to inhibins and TGFbeta. Previous studies have suggested that betaglycan acts as a tumor suppressor in certain human epithelial cancers. However, the roles of betaglycan in ovarian granulosa cell tumors (GCTs) are poorly understood. The objective of this study was to determine whether human GCTs exhibit betaglycan expression and, if so, what impact this receptor has on tumor biology. Real-time PCR was used to quantify betaglycan transcripts in human GCTs (n = 17) and normal premenopausal ovaries (n = 11). This analysis established that GCTs exhibited a significant 2-fold lower mean betaglycan mRNA level as compared with the normal ovary (P < 0.05). Similarly, two human GCT cell lines, KGN and COV434, exhibited low betaglycan expression and poor responsiveness to TGFbeta and inhibin A in luciferase reporter assays, which was restored by stable transfection of wild-type betaglycan. Betaglycan significantly increased the adhesion of COV434 (P < 0.05) and KGN (P < 0.0001) cells, decreased cellular invasion through Matrigel, and inhibited wound healing. Expression of mutant forms of betaglycan that are defective in TGFbeta and/or inhibin binding in each GCT cell line revealed that the inhibitory effects of betaglycan on wound healing were most strongly linked to the inhibin-binding region of betaglycan. Furthermore, knockdown of INHA mRNA expression abrogated the betaglycan-mediated inhibition of wound healing and invasion, whereas both INHA silencing and TGFbeta neutralization abolished the betaglycan-mediated increase in adhesion to substrate. These data suggest that loss of betaglycan contributes to the pathogenesis of GCTs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Activins / genetics
  • Activins / metabolism
  • Cell Adhesion / physiology
  • Cell Line, Tumor
  • Female
  • Gene Silencing
  • Granulosa Cell Tumor / metabolism
  • Granulosa Cell Tumor / pathology*
  • Humans
  • Inhibins / genetics
  • Inhibins / metabolism
  • Ligands
  • Neoplasm Invasiveness
  • Ovarian Neoplasms / metabolism
  • Ovarian Neoplasms / pathology*
  • Proteoglycans / genetics
  • Proteoglycans / metabolism*
  • Receptors, Transforming Growth Factor beta / genetics
  • Receptors, Transforming Growth Factor beta / metabolism*
  • Transforming Growth Factor beta / genetics
  • Transforming Growth Factor beta / metabolism

Substances

  • Ligands
  • Proteoglycans
  • Receptors, Transforming Growth Factor beta
  • Transforming Growth Factor beta
  • inhibin-alpha subunit
  • Activins
  • betaglycan
  • Inhibins