Identification of seasonal variations in volatile sulfur compound formation and release from the secondary treatment system at a large wastewater treatment plant

Water Environ Res. 2008 Dec;80(12):2261-7. doi: 10.2175/106143008x304677.

Abstract

The purpose of this study was to identify, quantify, and determine source locations of significant volatile sulfur compounds (VSCs) associated with the activated sludge treatment process at a large wastewater treatment plant. Flux chamber and wastewater headspace sampling techniques were used to capture odorous gases followed by gas chromatography mass spectrometry analysis. Olfactometric analysis corroborated the results from the chemical analysis. Dimethylsulfide (DMS) and dimethyldisulfide (DMDS) concentrations in wastewater were strongly correlated with sludge blanket depth [DMDS: r = 0.86 (p < 0.001, df = 24) and DMS: r = 0.72 (p < 0.001, df = 24)]. A strong statistical correlation also was established between concentrations of these two odorants in the gas samples and the recognition odor concentration [DMS: r = 0.85 (p < 0.001, df = 13) and DMDS: r = 0.81 (p < 0.001, df = 13)]. Results indicate that settled sludge in the anoxic environment of the secondary sedimentation basin is the most important contributor to the formation of VSCs in the activated sludge treatment system.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Air Pollutants / analysis
  • Air Pollutants / metabolism*
  • Biodegradation, Environmental
  • District of Columbia
  • Seasons*
  • Sulfur Compounds / analysis
  • Sulfur Compounds / metabolism*
  • Waste Disposal, Fluid*
  • Water Purification

Substances

  • Air Pollutants
  • Sulfur Compounds