Chemical speciation in mining affected waters: the case study of Asarel-Medet mine

Environ Monit Assess. 2009 Dec;159(1-4):353-66. doi: 10.1007/s10661-008-0634-6. Epub 2008 Dec 7.

Abstract

The inorganic chemical species in Maresh and Luda Yana rivers affected by the Cu- Mo Asarel-Medet mine, Bulgaria were determined during a low-flow and a high-flow period. The mining activities, the weathering and the oxidation processes strongly influenced the physicochemical processes in the whole water system. The main pollution source was a small lake receiving the acid effluents of the mining activities. High levels of SO4(2-), Cu, Mg, Al, Mn and Fe were determined at the mining polluted and affected stations. Cu(2+) and CuCO3(0) species (1:1) were present in the reference waters and Cu(2+) and CuSO4(0) species (1:1) in the polluted and affected waters; Cu(2+) species was dominating downstream. Me(2+) followed by MeSO4(0) (Me = Mn, Zn, Cd and Pb), PbCO3(0) and PbHCO3(+) species as well as Fe(OH)2(+), Al(OH)4(-), Al(OH)2(+), Al(OH)3(0) were prevailing in the system. MeSO4(+) and Me(SO4)2(-) (Me = Fe, Al), Me(SO4)2(2-) (Me = Zn, Cd and Pb), Me(SO4)3(4-) (Me = Zn, Cd) and Cd(SO4)4(6-) species polluted and affected waters. The major elements K and Na were mainly Me(+) species, whereas Ca and Mg were Me(2+) and MeSO4(0) species in different ratios. The concentration of concentration of NO2(-), NO3(-) and NO4(+) species as well as complex phosphorous species such as H2PO4(-), FeHPO4(+), HPO4(2-), CaPO4(-), CaHPO4(0) and MgHPO4(0) were also calculated. The trace element concentrations decreased downstream due to dilution, sorption processes and precipitation, but the percentage of free metal species, which are more toxic, increased. An exception was iron and aluminum of which the dominant hydroxy colloidal and sulphate species were easily incorporated into the suspended phase.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bulgaria
  • Environmental Monitoring*
  • Geography
  • Mining*
  • Models, Theoretical
  • Rivers* / chemistry
  • Water Pollutants, Chemical / analysis*
  • Water Pollutants, Chemical / chemistry

Substances

  • Water Pollutants, Chemical