Lanthanide(III) and actinide(III) complexes [M(BH4)2 (THF)5][BPh4] and [M(BH4)2(18-crown-6)][BPh4] (M = Nd, Ce, U): synthesis, crystal structure, and density functional theory investigation of the covalent contribution to metal-borohydride bonding

Inorg Chem. 2009 Jan 5;48(1):221-30. doi: 10.1021/ic801685v.

Abstract

Treatment of [M(BH4)3(THF)3] with NEt3HBPh4 in THF afforded the cationic complexes [M(BH4)2(THF)5][BPh4] [M = U (1), Nd (2), Ce (3)] which were transformed into [M(BH4)2(18-crown-6)][BPh4] [M = U (4), Nd (5), Ce (6)] in the presence of 18-crown-6; [U(BH4)2(18-thiacrown-6)][BPh4] (7) was obtained from 1 and 18-thiacrown-6 in tetrahydro-thiophene. Compounds 1, 3.C4H8S, 4.THF, 5, and 6.THF exhibit a penta- or hexagonal bipyramidal crystal structure with the two terdentate borohydride ligands in apical positions; the BH4 groups in the crystals of 7.C4H8S are in relative cis positions, and the thiacrown-ether presents a saddle shape, with two diametrically opposite sulfur atoms bound to uranium in trans positions. The crystal structures of these complexes, as well as those of previously reported [M(BH4)2(THF)5]+ cations, do not reveal any clear-cut lanthanide(III)/actinide(III) differentiation. The structural data obtained for [M(BH4)2(18-crown-6)]+ (M = U, Ce) by relativistic density functional theory (DFT) calculations are indicative of a small shortening of the U...B with respect to the Ce...B distance, which is accompanied by a lengthening of the U-Hb bonds and an opening of the Hb-B-Hb angle (Hb = bridging hydrogen atom of the eta3-BH4 ligand). The Mulliken population analysis and the natural bond orbital analysis indicate that the BH4 -->M(III) donation is greater for M = U than for M = Ce, as well as the overlap population of the M-Hb bond, thus showing a better interaction between the uranium 5f orbitals and the Hb atoms. The more covalent character of the B-H-U three-center two-electron bond was confirmed by the molecular orbital (MO) analysis. Three MOs represent the pi bonding interactions between U(III) and the three Hb atoms with significant 6d and 5f orbital contributions. These MOs in the cerium(III) complex exhibit a much lesser metallic weight with practically no participation of the 4f orbitals.