Cumulative impact of GM herbicide-tolerant cropping on arable plants assessed through species-based and functional taxonomies

Environ Sci Pollut Res Int. 2009 Jan;16(1):85-94. doi: 10.1007/s11356-008-0072-6. Epub 2008 Dec 2.

Abstract

Background, aim and scope: In a gradualist approach to the introduction of crop biotechnology, the findings of experimentation at one scale are used to predict the outcome of moving to a higher scale of deployment. Movement through scales had occurred for certain genetically modified herbicide-tolerant (GMHT) crops in the UK as far as large-scale field trials. However, the land area occupied by these trials was still <1% of the area occupied by the respective non-GM crops. Some means is needed to predict the direction and size of the effect of increasing the area of GMHT cropping on ecological variables such as the diversity among species and trophic interactions. Species-accumulation curves are examined here as a method of indicating regional-scale impacts on botanical diversity from multiple field experiments.

Materials and methods: Data were used from experiments on the effect of (GMHT) crops and non-GM, or conventional, comparators in fields sown with four crop types (beet, maize, spring and winter oilseed rape) at a total of 250 sites in the UK between 2000 and 2003. Indices of biodiversity were measured in a split-field design comparing GMHT with the farmers' usual weed management. In the original analyses based on the means at site level, effects were detected on the mass of weeds in the three spring crops and the proportion of broadleaf and grass weeds in winter oilseed rape, but not on indices of plant species diversity. To explore the links between site means and total taxa, accumulation curves were constructed based on the number of plant species (a pool of around 250 species in total) and the number of plant functional types (24), inferred from the general life-history characteristics of a species.

Results: Species accumulation differed between GMHT and conventional treatments in direction and size, depending on the type of crop and its conventional management. Differences were mostly in the asymptote of the curve, indicative of the maximum number of species found in a treatment, rather than the steepness of the curve. In winter oilseed rape, 8% more species were accumulated in the GMHT treatment, mainly as a result of the encouragement of grass species by the herbicide when applied in the autumn. (Overall, GMHT winter oilseed rape had strong negative effects on both the food web and the potential weed burden by increasing the biomass of grasses and decreasing that of broadleaf weeds.) In maize, 33% more species-a substantial increase-were accumulated in the GMHT than in the conventional, consistent with the latter's highly suppressive weed management using triazine herbicides. In the spring oilseed rape and beet, fewer species (around 10%) were accumulated in the GMHT than the conventional. The GMHT treatments did not remove or add any functional (life history) types, however. Differences in species accumulation between treatments appeared to be caused by loss or gain of rarer species. The generality of this effect was confirmed by simulations of species accumulation in which the species complement at each of 50 sites was drawn from a regional pool and subjected to reducing treatment at each site. Shifts in the species-accumulation parameters, comparable to those measured, occurred only when a treatment removed the rarer species at each site.

Discussion: Species accumulation provided a set of simple curve-parameters that captured the net result of numerous local effects of treatments on plant species and, in some instances, the balance between grass and broadleaf types. The direction of effect was not the same in the four crops and depended on the severity of the conventional treatment and on complex interactions between season, herbicide and crop. The accumulation curves gave an indication of potential positive or negative consequences for regional species pools of replacing a conventional practice with GMHT weed management. In this and related studies, a range of indicators, through which diversity was assessed by both species and functional type, and at both site and regional scales, gave more insight into effects of GMHT treatment than provided by any one indicator.

Conclusions: Species accumulation was shown to discriminate at the regional scale between agronomic treatments that had little effect on species number at the field scale. While a comprehensive assessment of GM cropping needs to include an examination of regional effects, as here, the costs of doing this in all instances would be prohibitive. Simulations of diversity-reducing treatments could provide a theoretical framework for predicting the likely regional effects from in-field plant dynamics.

Recommendations and perspectives: Accumulation curves potentially offer a means of linking within-site effects to regional impacts on biodiversity resulting from any change in agricultural practice. To guide empirical measurement, there is a scope to apply a methodology such as individual-based modelling at the field scale to explore the links between agronomic treatments and the relative abundance of plant types. The framework needs to be validated in practice, using species-based and functional taxonomies, the latter defined by measured rather than inferred traits.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Beta vulgaris / drug effects
  • Beta vulgaris / genetics
  • Brassica rapa / drug effects
  • Brassica rapa / genetics
  • Crops, Agricultural / drug effects*
  • Crops, Agricultural / genetics*
  • Environment
  • Environmental Monitoring
  • Herbicide Resistance / genetics*
  • Herbicides / pharmacology*
  • Plants, Genetically Modified*
  • Zea mays / drug effects
  • Zea mays / genetics

Substances

  • Herbicides