Solvent smectic order parameters from solute nematic order parameters

J Chem Phys. 2008 Sep 7;129(9):094509. doi: 10.1063/1.2970074.

Abstract

In liquid crystals, while the second and fourth rank orientational order parameters characterizing a nematic phase can be experimentally determined via several techniques, there is no straightforward experiment rendering the positional order parameters characterizing a smectic A phase. This work illustrates a novel method to estimate the positional order parameters of a smectogenic liquid crystal solvent from knowledge of the orientational order parameters of a number of solutes dissolved therein. The latter order parameters can be experimentally determined via liquid crystal NMR spectroscopy. These data can be then analyzed with a statistical-thermodynamic density functional theory, whose basic ingredient is a model for solute-solvent intermolecular interactions. Its parametrization and the subsequent fitting procedure eventually permit one to obtain the positional order parameters of the solvent besides the positional-orientational distribution function of the solutes. The method is applied to the smectogen 4,4(')-di-n-heptyl-azoxybenzene, in which the solutes 1,4-dichlorobenzene and naphthalene have been dissolved. With the help of this exploratory practical example, pros and cons of the method are pointed out and further developments prospected.