Recipient immune repertoire and engraftment site influence the immune pathway effecting acute hepatocellular allograft rejection

Cell Transplant. 2008;17(7):829-44. doi: 10.3727/096368908786516792.

Abstract

As novel acute allograft rejection mechanisms are being discovered, determining the conditions that promote or subvert these distinct rejection pathways is important to interpret the clinical relevance of these pathways for specific recipient groups as well as specific tissue and organ transplants. We have employed a versatile hepatocellular allograft model to analyze how the host immune repertoire and immune locale influences the phenotype of the rejection pathway. In addition, we investigated how peripheral monitoring of cellular and humoral immune parameters correlates with the activity of a specific rejection pathway. Complete MHC mismatched hepatocellular allografts were transplanted into immune competent CD4-deficient, CD8-deficient, or C57BL/6 hosts to focus on CD8-dependent, CD4-dependent, or combined CD4 and CD8-dependent alloimmunity, respectively. Hepatocellular allografts were transplanted to the liver or kidney subcapsular space to investigate the influence of the immune locale on each rejection pathway. The generation of donor-reactive DTH, alloantibody, and allospecific cytotoxicity was measured to assess both cellular and humoral immunity. Graft-infiltrating lymphocytes were phenotyped and enumerated in each recipient group. In the presence of CD8+ T cells, cytolytic cellular activity is the dominant mechanism of graft destruction and is amplified in the presence of CD4+ T cells. The absence of CD8+ T cells (CD8 KO) results in potent humoral immunity as reflected by high levels of cytotoxic alloantibody and graft rejection with similar kinetics. Transplant to the liver compared to the kidney site is distinguished by more rapid kinetics of rejection and alloimmunity, which is predominately cell mediated rather than a mix of both humoral and cell-mediated immunity. These studies define several rejection mechanisms occurring in distinct immune conditions, highlighting the plasticity of acute allograft rejection responses and the need to design specific monitoring strategies for these pathways to allow dynamic immune assessment of clinical transplant recipients and targeted immunotherapies.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • CD4-Positive T-Lymphocytes / immunology
  • CD8-Positive T-Lymphocytes / immunology
  • Graft Rejection / immunology*
  • Hepatocytes / cytology
  • Hepatocytes / immunology*
  • Hepatocytes / transplantation*
  • Humans
  • Immune System / immunology*
  • Kidney / cytology
  • Kidney / pathology
  • Mice
  • Mice, Inbred C57BL
  • Mice, Transgenic
  • Models, Immunological
  • Transplantation, Homologous / immunology*