Dehydrative cyclocondensation reactions on hydrogen-terminated Si(100) and Si(111): an ex situ tool for the modification of semiconductor surfaces

J Am Chem Soc. 2008 Dec 3;130(48):16216-23. doi: 10.1021/ja802645t.

Abstract

Dehydrative cyclocondensation processes for semiconductor surface modification can be generally suggested on the basis of well-known condensation schemes; however, in practice this approach for organic functionalization of semiconductors has never been investigated. Here we report the modification of hydrogen-terminated silicon surfaces by cyclocondensation. The cyclocondensation reactions of nitrobenzene with hydrogen-terminated Si(100) and Si(111) surfaces are investigated and paralleled with selected cycloaddition reactions of nitro- and nitrosobenzene with Si(100)-2x1. Infrared spectroscopy is used to confirm the reactions and verify an intact phenyl ring and C-N bond in the reaction products as well as the depletion of surface hydrogen. High resolution N 1s X-ray photoelectron spectroscopy (XPS) suggests that the major product for both cyclocondensation reactions investigated is a nitrosobenzene adduct that can only be formed following water elimination. Both IR and XPS are augmented by density functional theory (DFT) calculations that are also used to investigate the feasibility of several surface reaction pathways, which are insightful in understanding the relative distribution of products found experimentally. This novel surface modification approach will be generally applicable for semiconductor functionalization in a highly selective and easily controlled manner.