Neptunium(V) adsorption to calcite

J Contam Hydrol. 2008 Dec 12;102(3-4):246-52. doi: 10.1016/j.jconhyd.2008.09.015. Epub 2008 Oct 15.

Abstract

The migration behavior of the actinyl ions U(VI)O2(2+), Np(V)O2+ and Pu(V,VI)O2(+,2+) in the geosphere is to a large extend controlled by sorption reactions (inner- or outer-sphere adsorption, ion-exchange, coprecipitation/structural incorporation) with minerals. Here NpO2+ adsorption onto calcite is studied in batch type experiments over a wide range of pH (6.0-9.4) and concentration (0.4 microM-40 microM) conditions. pH is adjusted by variation of CO2 partial pressure. Adsorption is found to be pH dependent with maximal adsorption at pH 8.3 decreasing with increasing and decreasing pH. pH dependence of adsorption decreases with increasing Np(V) concentration. EXAFS data of neptunyl adsorbed to calcite and neptunyl in the supernatant shows differences in the Np(V)-O-yl distance, 1.85+/-0.01 angstroms for the adsorbed and 1.82+/-0.01 angstroms for the solution species. The equatorial environment of the neptunyl in solution shows about 5 oxygen neighbours at 2.45+/-0.02 angstroms. For adsorbed neptunyl there are also about 5 oxygen neighbours at 2.46+/-0.01 angstroms. An additional feature in the adsorbed species' R-space spectrum can be related to carbonate neighbours, 3 to 6 carbon backscatterers (C-eq) at 3.05+/-0.03 angstroms and 3 to 6 oxygen backscatterers (O-eq2) at 3.31+/-0.02 angstroms. The differences in the Np(V)-O-yl distance and the C-eq and O-eq2 backscatterers which are only present for the adsorbed species indicate inner-sphere bonding of the adsorbed neptunyl species to the calcite surface. Experiments on adsorption kinetics indicate that after a fast surface adsorption process a continuous slow uptake occurs which may be explained by incorporation via surface dissolution and reprecipitation processes. This is also indicated by the part irreversibility of the adsorption as shown by increased KD values after desorption compared to adsorption.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adsorption
  • Calcium Carbonate / chemistry*
  • Hydrogen-Ion Concentration
  • Kinetics
  • Microscopy, Electron, Scanning
  • Neptunium / chemistry*
  • Radioactive Waste / analysis

Substances

  • Radioactive Waste
  • Neptunium
  • Calcium Carbonate