Theoretical investigation of the uranyl ion sorption on the rutile TiO2(110) face

Inorg Chem. 2008 Dec 1;47(23):10991-7. doi: 10.1021/ic801246k.

Abstract

Canister integrity and radionuclide retention is of first importance for assessing the long-term safety of nuclear waste stored in engineered geologic depositories. Uranyl ion sorption on the TiO(2) rutile (110) face is investigated using periodic density functional theory (DFT) calculations. From experimental observations, only two uranyl surface complexes are observed and characterized. When the pH increases (from 1.5 to 4.5), the relative ratios of these two surface complexes are modified. From a crystallographic point of view, three sorption sites can be considered and have been studied with different protonation states of the surface to account for very acidic and low acidic conditions. The two surface complexes experimentally observed were calculated as the most stable ones, while the evolution of their sorption energies agrees with experimental data.