Spatial heterogeneity of water quality in a highly degraded tropical freshwater ecosystem

Environ Manage. 2009 Feb;43(2):249-63. doi: 10.1007/s00267-008-9216-1. Epub 2008 Oct 21.

Abstract

Awareness of environmental heterogeneity in ecosystems is critical for management and conservation. We used the Xochimilco freshwater system to describe the relationship between heterogeneity and human activities. This tropical aquatic ecosystem south of Mexico City is comprised of a network of interconnected canals and lakes that are influenced by agricultural and urban activities. Environmental heterogeneity was characterized by spatially extensive surveys within four regions of Xochimilco during rainy and dry seasons over 2 years. These surveys revealed a heterogeneous system that was shallow (1.1 m, SD=0.4 ), warm (17 degrees C, SD=2.9), well oxygenated (5.0 mg l(-1), SD=3), turbid (45.7 NTU SD = 26.96), and extremely nutrient-rich (NO(3)-N=15.9 mg l(-1), SD=13.7; NH(4)-N=2.88 mg l(-1), SD=4.24; and PO(4)-P=8.3 mg l(-1), SD=2.4). Most of the variables were not significantly different between years, but did differ between seasons, suggesting a dynamic system within a span of a year but with a high resilience over longer periods of time. Maps were produced using interpolations to describe distributions of all variables. There was no correlation between individual variables and land use. Consequently, we searched for relationships using all variables together by generating a combined water quality index. Significant differences in the index were apparent among the four regions. Index values also differed within individual region and individual water bodies (e.g., within canals), indicating that Xochimilco has high local heterogeneity. Using this index on a map helped to relate water quality to human activities and provides a simple and clear tool for managers and policymakers.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Conservation of Natural Resources / methods*
  • Ecosystem*
  • Environmental Monitoring / methods*
  • Fresh Water / chemistry*
  • Fresh Water / microbiology*
  • Mexico
  • Models, Theoretical*
  • Seasons*
  • Tropical Climate