Primary light-energy conversion in tetrameric chlorophyll structure of photosystem II and bacterial reaction centers: II. Femto- and picosecond charge separation in PSII D1/D2/Cyt b559 complex

Photosynth Res. 2008 Oct-Dec;98(1-3):95-103. doi: 10.1007/s11120-008-9371-5. Epub 2008 Oct 15.

Abstract

In Part I of the article, a review of recent data on electron-transfer reactions in photosystem II (PSII) and bacterial reaction center (RC) has been presented. In Part II, transient absorption difference spectroscopy with 20-fs resolution was applied to study the primary charge separation in PSII RC (DI/DII/Cyt b 559 complex) excited at 700 nm at 278 K. It was shown that the initial electron-transfer reaction occurs within 0.9 ps with the formation of the charge-separated state P680(+)Chl(D1)(-), which relaxed within 14 ps as indicated by reversible bleaching of 670-nm band that was tentatively assigned to the Chl(D1) absorption. The subsequent electron transfer from Chl(D1)(-) within 14 ps was accompanied by a development of the radical anion band of Pheo(D1) at 445 nm, attributable to the formation of the secondary radical pair P680(+)Pheo(D1)(-). The key point of this model is that the most blue Q(y) transition of Chl(D1) in RC is allowing an effective stabilization of separated charges. Although an alternative mechanism of charge separation with Chl(D1)* as a primary electron donor and Pheo(D1) as a primary acceptor can not be ruled out, it is less consistent with the kinetics and spectra of absorbance changes induced in the PSII RC preparation by femtosecond excitation at 700 nm.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacteria / metabolism
  • Energy Metabolism*
  • Kinetics
  • Light*
  • Photosynthesis
  • Photosystem II Protein Complex / metabolism*
  • Plants / metabolism
  • Spectrum Analysis
  • Time Factors

Substances

  • Photosystem II Protein Complex