Nanostructured surfaces and assemblies as SERS media

Small. 2008 Oct;4(10):1576-99. doi: 10.1002/smll.200800337.

Abstract

Metallic nanostructures attract much interest as an efficient media for surface-enhanced Raman scattering (SERS). Significant progress has been made on the synthesis of metal nanoparticles with various shapes, composition, and controlled plasmonic properties, all critical for an efficient SERS response. For practical applications, efficient strategies of assembling metal nanoparticles into organized nanostructures are paramount for the fabrication of reproducible, stable, and highly active SERS substrates. Recent progress in the synthesis of novel plasmonic nanoparticles, fabrication of highly ordered one-, two-, and three-dimensional SERS substrates, and some applications of corresponding SERS effects are discussed.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.
  • Review

MeSH terms

  • Electromagnetic Phenomena
  • Metal Nanoparticles / chemistry
  • Metal Nanoparticles / ultrastructure
  • Nanostructures / chemistry*
  • Nanostructures / ultrastructure
  • Spectrum Analysis, Raman*
  • Surface Properties