Genetic manipulation of lysine catabolism in maize kernels

Plant Mol Biol. 2009 Jan;69(1-2):81-9. doi: 10.1007/s11103-008-9409-2. Epub 2008 Oct 7.

Abstract

In plants, lysine catabolism is thought to be controlled by a bifunctional enzyme, lysine ketoglutarate reductase/saccharopine dehydrogenase (LKR/SDH). Lysine is converted to saccharopine, through condensation with alpha-ketoglutarate, by LKR, and subsequently to glutamate and alpha-aminoadipate-delta-semialdehyde by SDH. To investigate lysine catabolism in maize kernels, we generated transgenic plants with suppressed LKR/SDH activity in either endosperm or embryo. We found that the suppression of LKR/SDH in endosperm induced an increase in free lysine in developing endosperm, which peaked at 32 days after pollination. At later stages of kernel development, most of the free lysine was found in the embryo along with an elevated level of saccharopine. By combining endosperm LKR/SDH suppression with embryo LKR/SDH suppression through crosses, the saccharopine level in embryo was reduced and resulted in higher lysine accumulation in mature kernels. These results reveal new insights into how free lysine level is regulated and distributed in developing maize kernels and demonstrate the possibility of engineering high lysine corn via the suppression of lysine catabolism.

MeSH terms

  • Base Sequence
  • Blotting, Western
  • DNA Primers
  • Lysine / metabolism*
  • Plants, Genetically Modified
  • Reverse Transcriptase Polymerase Chain Reaction
  • Zea mays / genetics
  • Zea mays / metabolism*

Substances

  • DNA Primers
  • Lysine