Quantum dots as multimodal photoacoustic and photothermal contrast agents

Nano Lett. 2008 Nov;8(11):3953-8. doi: 10.1021/nl802442x. Epub 2008 Oct 4.

Abstract

Quantum dots (QDs) have primarily been developed as fluorescent probes with unique optical properties. We herein demonstrate an extension of these QD utilities to photoacoustic (PA) and photothermal (PT) microscopy, using a nanosecond pulse laser excitation (420-900 nm, 8 ns, 10(-3)-10 J/cm(2)). The laser-induced PA, PT and accompanying bubble formation phenomena were studied with an advanced multifunctional microscope, which integrates fluorescence, PA, PT imaging, and PT thermolens modules. It was demonstrated that QDs, in addition to being excellent fluorescent probes, can be used as PA and PT contrast agents and sensitizers, thereby providing an opportunity for multimodal high resolution (300 nm) PA-PT-fluorescent imaging as well as PT therapy. Further improvements for this technology are suggested by increasing the conversion of laser energy in PT, PA, and bubble phenomena in hybrid multilayer QDs that have optimized absorption, thermal, and acoustic properties.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Contrast Media / chemistry*
  • Photochemistry
  • Quantum Dots*
  • Spectrophotometry

Substances

  • Contrast Media