Unambiguous identification of Möbius aromaticity for meso-aryl-substituted [28]hexaphyrins(1.1.1.1.1.1)

J Am Chem Soc. 2008 Oct 15;130(41):13568-79. doi: 10.1021/ja801983d. Epub 2008 Sep 23.

Abstract

meso-Aryl-substituted [28]hexaphyrins(1.1.1.1.1.1) have been examined by (1)H, (13)C, and (19)F NMR spectroscopies, UV-vis absorption spectroscopy, magnetic circular dichroism spectroscopy, and single-crystal X-ray diffraction analysis. All of these data consistently indicate that [28]hexaphyrins(1.1.1.1.1.1) in solution at 25 degrees C exist largely as an equilibrium among several rapidly interconverting twisted Möbius conformations with distinct aromaticities, with a small contribution from a planar rectangular conformation with antiaromatic character at slightly higher energy. In the solid state, [28]hexaphyrins(1.1.1.1.1.1) take either planar or Möbius-twisted conformations, depending upon the meso-aryl substituents and crystallization conditions, indicating a small energy difference between the two conformers. Importantly, when the temperature is decreased to -100 degrees C in THF, these rapid interconversions among Möbius conformations are frozen, allowing the detection of a single [28]hexaphyrin(1.1.1.1.1.1) species having a Möbius conformation. Detailed analyses of the solid-state Möbius structures of compounds 2b, 2c, and 2f showed that singly twisted structures are achieved without serious strain and that cyclic pi-conjugation is well-preserved, as needed for exhibiting strong diatropic ring currents. Actually, the harmonic-oscillator model for aromaticity (HOMA) values of these structures are significantly large (0.85, 0.69, and 0.71, respectively), confirming the first demonstration of stable Möbius aromatic systems consisting of free-base expanded porphyrins without the assistance of metal coordination.