Carbon monoxide produced by intrasinusoidally located haem-oxygenase-1 regulates the vascular tone in cirrhotic rat liver

Liver Int. 2009 May;29(5):650-60. doi: 10.1111/j.1478-3231.2008.01857.x. Epub 2008 Sep 15.

Abstract

Background/objective: Carbon monoxide (CO) produced by haem-oxygenase isoforms (HO-1 & HO-2) is involved in the regulation of systemic vascular tone. We aimed to elucidate the vasoregulatory role of CO in the microcirculation in normal and thioacetamide cirrhotic rat livers.

Methods: Haem-oxygenase expression was examined by Western blot. Total HO enzymatic activity was measured spectrophotometrically. Sensitivity of hepatic stellate cells (HSCs) to CO-mediated relaxation was studied by a stress-relaxed-collagen-lattice model. To define the relative role of CO, the CO-releasing molecule CORM-2, the HO-inhibitor zinc protoporphyrin-IX and the HO-1 inducer hemin were added to an in situ liver perfusion set-up. The topography of vasoactive CO production was evaluated by applying different CO- and nitric oxide-trapping reagents in the liver perfusion set-up and by immunohistochemistry.

Results: Western blot showed decreased expression of both HO isoenzymes (P<0.036 for HO-1; P<0.001 for HO-2) in cirrhotic vs normal rat livers, confirmed by the HO-activity assay (P=0.004). HSCs relaxed on exposure to CORM-2 (P=0.013). The increased intrahepatic vascular resistance (IHVR) of cirrhotic rats was attenuated by perfusion with CORM-2 (P=0.016) and pretreatment with hemin (P<0.001). Inhibition of HO caused a dose-related increase in IHVR in normal and cirrhotic liver. In normal liver, the haemodynamically relevant CO production occurred extrasinusoidally, while intrasinusoidally HO-1 predominantly regulated the microcirculation in cirrhotic livers.

Conclusion: We demonstrate a role for CO and HO in the regulation of normal and cirrhotic microcirculation. These findings are of importance in the pathophysiology of portal hypertension and establish CO/HO as novel treatment targets.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Blotting, Western
  • Carbon Monoxide / metabolism*
  • Heme Oxygenase-1 / metabolism*
  • Hemin
  • Hemodynamics / physiology*
  • Hepatic Stellate Cells / physiology
  • Liver Cirrhosis / enzymology*
  • Models, Biological
  • Organometallic Compounds
  • Rats

Substances

  • Organometallic Compounds
  • tricarbonyldichlororuthenium (II) dimer
  • Hemin
  • Carbon Monoxide
  • Heme Oxygenase-1