An on-line replanning scheme for interfractional variations

Med Phys. 2008 Aug;35(8):3607-15. doi: 10.1118/1.2952443.

Abstract

Ability of online adaptive replanning is desirable to correct for interfraction anatomic changes. A full-scope replanning/reoptimization with the current planning techniques takes too long to be practical. A novel online replanning strategy to correct for interfraction anatomic changes in real time is presented. The scheme consists of three steps: (1) rapidly delineating targets and organs at risk on the computed tomography of the day by modifying original planning contours using robust tools in a semiautomatic manner, (2) online segment aperture morphing (SAM) (adjusting beam/ segment apertures) by applying the spatial relationship between the planning target contour and the apertures to the new target contour, and (3) performing segment weight optimization (SWO) for the new apertures if necessary. The entire scheme was tested for direct-aperture-based IMRT on representative prostate and abdomen cases. Dose volume histograms obtained with the online scheme are practically equivalent to those obtained with full-scope reoptimization. For the days of small to moderate organ deformations, only the SAM is necessary, while for the large deformation days, both SAM and SWO are required to adequately account for the deformation. Both the SAM and SWO programs can be completed within 1 min, and the overall process can be completed within 10 min. The proposed SAM-SWO scheme is practically comparable to full-scope reoptimization, but is fast enough to be implemented for on-line adaptive replanning, enabling dose-guided RT.

MeSH terms

  • Automation
  • Dose Fractionation, Radiation
  • Humans
  • Male
  • Pancreatic Neoplasms* / diagnostic imaging
  • Pancreatic Neoplasms* / pathology
  • Pancreatic Neoplasms* / radiotherapy
  • Prostate / diagnostic imaging
  • Prostate / pathology
  • Prostatic Neoplasms* / diagnostic imaging
  • Prostatic Neoplasms* / pathology
  • Prostatic Neoplasms* / radiotherapy
  • Radiation Dosage
  • Radiography, Abdominal / radiation effects*
  • Radiotherapy, Computer-Assisted / methods*
  • Rectum / diagnostic imaging
  • Rectum / pathology
  • Tomography, X-Ray Computed / methods*
  • Urinary Bladder / diagnostic imaging
  • Urinary Bladder / pathology