Molecules in focus: cytosolic phospholipase A2-alpha

Int J Biochem Cell Biol. 2009 May;41(5):994-7. doi: 10.1016/j.biocel.2008.07.017. Epub 2008 Aug 8.

Abstract

Cytosolic phospholipase A(2)-alpha (cPLA(2)-alpha) cleaves its preferred substrate, arachidonic acid, at the sn-2 position of membrane glycerophospholipids. Stimulation of cells with agents that mobilize intracellular calcium and/or promote the phosphorylation of cPLA(2)-alpha leads to (i) translocation of the enzyme from cytosol to endoplasmic reticulum, Golgi apparatus and perinuclear membranes-where it associates with the arachidonic acid in close proximity to downstream eicosanoid-producing enzymes; and (ii) the change in configuration induced by phosphorylation increases the phospholipid binding affinity and arachidonic acid release. As a mediator of growth factors, cytokines, chemokines, and hormones that modulate survival and growth in various cell types, cPLA(2)-alpha has attracted considerable attention as a potential therapeutic target in control of inflammation and cancer. The importance of the enzyme may have been underestimated by the relatively normal phenotype in the enzyme knockout animals. A clear phenotype has emerged when these knockout animals are used as models of various diseases.

Publication types

  • Review

MeSH terms

  • Animals
  • Arachidonic Acid / metabolism
  • Cytosol / enzymology
  • Group IV Phospholipases A2 / genetics
  • Group IV Phospholipases A2 / metabolism*
  • Humans
  • Mice
  • Mice, Knockout

Substances

  • Arachidonic Acid
  • Group IV Phospholipases A2