Tumor necrosis factor-alpha-induced accentuation in cryoinjury: mechanisms in vitro and in vivo

Mol Cancer Ther. 2008 Aug;7(8):2547-55. doi: 10.1158/1535-7163.MCT-07-2421.

Abstract

Cryosurgical treatment of solid cancer can be greatly assisted by further translation of our finding that a cytokine adjuvant tumor necrosis factor-alpha (TNF-alpha) can achieve complete cancer destruction out to the intraoperatively imaged iceball edge (-0.5 degrees C) over the current clinical recommendation of reaching temperatures lower than -40 degrees C. The present study investigates the cellular and tissue level dose dependency and molecular mechanisms of TNF-alpha-induced enhancement in cryosurgical cancer destruction. Microvascular endothelial MVEC and human prostate cancer LNCaP Pro 5 (LNCaP) cells were frozen as monolayers in the presence of TNF-alpha. Normal skin and LNCaP tumor grown in a nude mouse model were also frozen at different TNF-alpha doses. Molecular mechanisms were investigated by using specific inhibitors to block nuclear factor-kappaB-mediated inflammatory or caspase-mediated apoptosis pathways. The amount of cryoinjury increased in a dose-dependent manner with TNF-alpha both in vitro and in vivo. MVEC were found to be more cryosensitive than LNCaP cells in both the presence and the absence of TNF-alpha. The augmentation in vivo was significantly greater than that in vitro, with complete cell death up to the iceball edge in tumor tissue at local TNF-alpha doses greater than 200 ng. The inhibition assays showed contrasting results with caspase-mediated apoptosis as the dominant mechanism in MVEC in vitro and nuclear factor-kappaB-mediated inflammatory mechanisms within the microvasculatures the dominant mechanism in vivo. These results suggest the involvement of endothelial-mediated injury and inflammation as the critical mechanisms in cryoinjury and the use of vascular-targeting molecules such as TNF-alpha to enhance tumor killing and achieve the clinical goal of complete cell death within an iceball.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis
  • Cell Line, Tumor
  • Cryosurgery*
  • Humans
  • In Vitro Techniques
  • Male
  • Mice
  • NF-kappa B / antagonists & inhibitors
  • Recombinant Proteins / pharmacology
  • Tumor Necrosis Factor-alpha / pharmacology*

Substances

  • NF-kappa B
  • Recombinant Proteins
  • Tumor Necrosis Factor-alpha