Native human autoantibodies targeting GIPC1 identify differential expression in malignant tumors of the breast and ovary

BMC Cancer. 2008 Aug 24:8:247. doi: 10.1186/1471-2407-8-247.

Abstract

Background: We have been studying the native humoral immune response to cancer and have isolated a library of fully human autoantibodies to a variety of malignancies. We previously described the isolation and characterization of two fully human monoclonal antibodies, 27.F7 and 27.B1, from breast cancer patients that target the protein known as GIPC1, an accessory PDZ-domain binding protein involved in regulation of G-protein signaling. Human monoclonal antibodies, 27.F7 and 27.B1, to GIPC1 demonstrate specific binding to malignant breast cancer tissue with no reactivity with normal breast tissue.

Methods: The current study employs cELISA, flow cytometry, Western blot analysis as well as immunocytochemistry, and immunohistochemistry. Data is analyzed statistically with the Fisher one-tail and two-tail tests for two independent samples.

Results: By screening several other cancer cell lines with 27.F7 and 27.B1 we found consistently strong staining of other human cancer cell lines including SKOV-3 (an ovarian cancer cell line). To further clarify the association of GIPC1 with breast and ovarian cancer we carefully studied 27.F7 and 27.B1 using immunocytochemical and immunohistochemical techniques. An immunohistochemical study of normal ovarian tissue, benign, borderline and malignant ovarian serous tumors, and different types of breast cancer revealed high expression of GIPC1 protein in neoplastic cells. Interestingly, antibodies 27.F7 and 27.B1 demonstrate differential staining of borderline ovarian tumors. Examination of different types of breast cancer demonstrates that the level of GIPC1 expression depends on tumor invasiveness and displays a higher expression than in benign tumors.

Conclusion: The present pilot study demonstrates that the GIPC1 protein is overexpressed in ovarian and breast cancer, which may provide an important diagnostic and prognostic marker and will constitute the basis for further study of the role that this protein plays in malignant diseases. In addition, this study suggests that human monoclonal antibodies 27.F7 and 27.B1 should be further evaluated as potential diagnostic tools.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptor Proteins, Signal Transducing / biosynthesis*
  • Adaptor Proteins, Signal Transducing / chemistry
  • Adaptor Proteins, Signal Transducing / immunology*
  • Antibodies, Monoclonal / chemistry
  • Autoantibodies / chemistry*
  • Breast / metabolism
  • Breast Neoplasms / immunology
  • Breast Neoplasms / metabolism*
  • Cell Line, Tumor
  • Disease Progression
  • Enzyme-Linked Immunosorbent Assay / methods
  • Female
  • Humans
  • Immunohistochemistry / methods
  • Ovarian Neoplasms / immunology
  • Ovarian Neoplasms / metabolism*
  • Pilot Projects

Substances

  • Adaptor Proteins, Signal Transducing
  • Antibodies, Monoclonal
  • Autoantibodies
  • GIPC1 protein, human