Ovarian follicular atresia is mediated by heterophagy, autophagy, and apoptosis in Prochilodus argenteus and Leporinus taeniatus (Teleostei: Characiformes)

Theriogenology. 2008 Dec;70(9):1449-60. doi: 10.1016/j.theriogenology.2008.06.091. Epub 2008 Aug 12.

Abstract

We investigated apoptosis, cell proliferation antigen (PCNA), and heat shock protein (HSP70) during ovarian follicular atresia in two freshwater teleost species from the São Francisco River basin, Brazil: curimatã-pacu, Prochilodus argenteus and piau-jejo, Leporinus taeniatus. Fishes were maintained in captivity after the reproductive period and ovarian regression was assessed by gonadosomatic index for three stages: early, advanced, and late regression. Follicular atresia was analysed by light and transmission electron microscopy, as well as by TUNEL and immunohistochemistry for HSP70 and PCNA. During early regression, atretic follicles exhibited zona pellucida breakdown, yolk degeneration, and hypertrophied follicular cells (e.g., granulosa in mammals). Intense heterophagy to engulf the yolk, and autophagy were detected in the follicular cells during advanced and late atresia. The TUNEL assay detected DNA fragmentation, mainly in late follicular atresia. The apoptosis rate of the follicular cells increased up to 10% during follicular atresia in both species and was negatively correlated with follicular area. Immunohistochemistry reaction for HSP70 stained the follicular cells strongly during advanced atresia, when they are intensively involved in yolk engulfment, whereas the reaction for PCNA labelled theca cells. We inferred that heterophagy, autophagy, and apoptosis contributed to follicular atresia in teleost ovaries, thereby achieving a more efficient removal of the degenerating oocyte and dying follicular cells. Additionally, HSP70 may protect the follicular cells before apoptosis when they are involved in yolk engulfment, and cell proliferation in the theca contributed to ovarian remodelling.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Apoptosis / physiology*
  • Autophagy / physiology*
  • DNA Fragmentation
  • Female
  • Fishes / physiology*
  • Follicular Atresia / physiology*
  • In Situ Nick-End Labeling
  • Ovarian Follicle / physiology*
  • Ovarian Follicle / ultrastructure
  • Reproduction / physiology*