Palladium catalysed alkyne hydrogenation and oligomerisation: a parahydrogen based NMR investigation

Dalton Trans. 2008 Aug 28:(32):4270-81. doi: 10.1039/b804162h. Epub 2008 Jun 25.

Abstract

The role phosphine ligands play in the palladium(ii)-bis-phosphine-hydride cation catalysed hydrogenation of diphenylacetylene is explored through a PHIP (parahydrogen induced polarization) NMR study. The precursors Pd(LL')(OTf)(2) (1a-e) [LL' = dcpe (PCy(2)CH(2)CH(2)PCy(2)), dppe, dppm, dppp, cppe (PCy(2)CH(2)CH(2)PPh(2))] are used. Alkyl palladium intermediates of the type [Pd(LL')(CHPhCH(2)Ph)](OTf) ( and ) are detected and demonstrated to play an active role in hydrogenation catalysis. Magnetization transfer experiments reveal chemical exchange from the alpha-H of the alkyl ligand of (LL' = dcpe) and linkage isomer ' (LL' = cppe) into trans-stilbene on the NMR timescale. Activation parameters (DeltaH( not equal) and DeltaS( not equal)) for this transformation have been determined. These experiments, coupled with GC/MS data, indicate that the catalytic activity is greater in methanol, where it follows the order: dcpe > cppe > dppp > dppe > dppm, than in CD(2)Cl(2). All five of the phosphine systems described are less active than those based on bcope [where bcope is (C(8)H(14))PCH(2)-CH(2)P(C(8)H(14))] and (t)bucope [where (t)bucope is (C(8)H(14))PC(6)H(4)CH(2)P((t)Bu)(2)]. cis, cis-1,2,3,4-Tetraphenyl-buta-1,3-diene is detected as a minor reaction product with Pd(LL')(PhCH-CHPh-CPh=CHPh)(+) (4) also being shown to play a role in the alkyne dimerisation step.