Structure-energy relationship in barbituric acid: a calorimetric, computational, and crystallographic study

J Phys Chem A. 2008 Aug 14;112(32):7455-65. doi: 10.1021/jp803370u. Epub 2008 Jul 23.

Abstract

This paper reports the value of the standard (p(o) = 0.1 MPa) molar enthalpy of formation in the gas phase at T = 298.15 K for barbituric acid. The enthalpies of combustion and sublimation were measured by static bomb combustion calorimetry and transference (transpiration) method in a saturated N2 stream and a gas-phase enthalpy of formation value of -(534.3 +/- 1.7) kJ x mol(-1) was determined at T = 298.15 K. G3-calculated enthalpies of formation are in very good agreement with the experimental value. The behavior of the sample as a function of the temperature was studied by differential scanning calorimetry, and a new polymorph of barbituric acid at high temperature was found. In the solid state, two anhydrous forms are known displaying two out of the six hydrogen-bonding patterns observed in the alkyl/alkenyl derivatives retrieved from the Cambridge Crystallographic Database. The stability of these motifs has been analyzed by theoretical calculations. X-ray powder diffraction technique was used to establish to which polymorphic form corresponds to the commercial sample used in this study and to characterize the new form at high temperature.