Multilayered optical memory with bits stored as refractive index change. II. Numerical results of a waveguide multilayered optical memory

J Opt Soc Am A Opt Image Sci Vis. 2008 Jul;25(7):1799-809. doi: 10.1364/josaa.25.001799.

Abstract

In terms of the electromagnetic theory described in Part I of our current investigations [J. Opt. Soc. Am. A24, 1776 (2007)], the numerical method for and results of numerical computations corresponding to the electromagnetic theory of a waveguide multilayered optical memory are presented. Here the characteristics of the cross talk and the modulation contrast, the power of readout signals, the variation of the power of the readout signals with the scanning position along the track, and the distribution of the light intensity at the detector are investigated in detail. Results show that the polarization of the reading light, the feature sizes of bits, and the distances between the two adjacent tracks and the two adjacent bits on the same track have significant effects on the distribution of the light intensity at the detector, the power of the readout signals, the cross talk, and the modulation contrast. In addition, the optimal polarization of the reading light is also suggested.