DFT study on chemical N2 fixation by using a cubane-type RuIr3S4 cluster: energy profile for binding and reduction of N2 to ammonia via Ru-N-NHx (x = 1-3) intermediates with unique structures

J Am Chem Soc. 2008 Jul 16;130(28):9037-47. doi: 10.1021/ja8009567. Epub 2008 Jun 18.

Abstract

The N-N bond activation of the dinitrogen ligand in the cubane-type mixed-metal sulfido cluster, [(Cp*Ir) 3{Ru(tmeda)(N 2)}(mu 3-S) 4] (tmeda = Me 2NCH 2CH 2NMe 2), is investigated by using DFT calculations at the B3LYP level of theory. The elongated N-N bond distance, red-shifted N-N stretching, and negatively charged N 2 ligand indicate that the dinitrogen is reductively activated by complexation. The degree of the N-N bond activation is classified into the "moderately activated" category, [ Studt, F. ; Tuczek, F. J. Comput. Chem. 2006, 27, 1278 ] as in the Mo-triamidoamine complex that can catalyze N 2 reduction [ Yandulov, D. V. ; Schrock, R. R. Science 2003, 301, 76 ]. Availability of the RuIr 3S 4 cluster as a catalyst for N 2 reduction is discussed by optimizing possible intermediates in a catalytic cycle analogous to that proposed by Yandulov and Schrock. A calculated energy profile of the catalytic cycle demonstrates that the RuIr 3S 4 cluster can transform dinitrogen into ammonia in the presence of lutidinium cation and Cp* 2Co as proton and electron sources, respectively. The RuIr 3S 4 clusters with an NNH x ( x = 1-3) ligand, which are intermediates in the catalytic cycle, have a significantly bent Ru-N-N linkage, although precedent NNH x complexes generally adopt a linear M-N-N array. The unique structures of the nitrogenous ligands in these intermediates are interpreted in terms of the bonding interaction between the hydrogen atom bonded to the N 2 ligand and the adjacent iridium atom in the cuboidal RuIr 3S 4 framework.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Ammonia / chemistry*
  • Models, Chemical
  • Nitrogen / chemistry*
  • Nitrogen Fixation
  • Oxidation-Reduction
  • Ruthenium / chemistry*
  • Structure-Activity Relationship
  • Thermodynamics

Substances

  • Ammonia
  • Ruthenium
  • Nitrogen