Heavy metal contamination in soil alongside mountain railway in Sichuan, China

Environ Monit Assess. 2009 May;152(1-4):25-33. doi: 10.1007/s10661-008-0293-7. Epub 2008 Jun 14.

Abstract

Heavy metal concentration in soil was investigated at three sites with different topography (cut slope, flat and embankment) within the vicinity of Chengdu-Kunming railway in Sichuan, China. Surface soil was sampled at certain distances from the track at each site and was analyzed for Cu, Mn, Pb, Zn, Cd by atomic absorption spectrometry. Cu, Cd and Zn concentrations in some soil exceeded the thresholds for non-polluted soil following the soil quality standard set by the State Environmental Protection Agency of China. Compared to local background values, the highest enrichment factor values of Cu, Mn, Zn and Cd were 2.7, 3.4, 3.7 and 7.7, respectively, indicating a moderate or significant enrichment of these metals in soil closest to the railway. Pb showed little accumulation with the EF values generally nearer 1 at the chosen sites. Topography profile was found to influence metal levels and distribution in soil alongside railway. At the cut slope site, Mn, Zn, Cd showed the highest concentrations and the smallest dispersion distance of 2 m, while Cu showed further dispersion distance of 25 m due to a main Cu emission source, the head-over traction cable, being located higher than any other metal emission source (wheels and tracks). Heavy metal concentrations decreased conversely as compared to distance from the track, peak values occurring at locations closest to the tracks, whilst embankment site soil Cd concentrations peaked at distances of 25 m. Significant correlation was found amongst Mn, Cu, Zn and Cd, which indicates that these metals have the same anthropogenic origin there. Organic matter content had no significant correlation to the elements Mn, Cu and Zn, which implies relatively high mobility to those metals.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • China
  • Climate
  • Environmental Monitoring / methods
  • Geography
  • Humans
  • Metals, Heavy / analysis*
  • Railroads*
  • Soil Pollutants / analysis*

Substances

  • Metals, Heavy
  • Soil Pollutants