WNK kinases, renal ion transport and hypertension

Am J Nephrol. 2008;28(5):860-70. doi: 10.1159/000139639. Epub 2008 Jun 12.

Abstract

Two members of a recently discovered family of protein kinases are the cause of an inherited disease known as pseudohypoaldosteronism type II (PHAII). These patients exhibit arterial hypertension together with hyperkalemia and metabolic acidosis. This is a mirror image of Gitelman disease that is due to inactivating mutations of the SLC12A3 gene that encodes the thiazide-sensitive Na(+):Cl(-) cotransporter. The uncovered genes causing PHAII encode for serine/threonine kinases known as WNK1 and WNK4. Physiological and biochemical studies have revealed that WNK1 and WNK4 modulate the activity of several transport pathways of the aldosterone-sensitive distal nephron, thus increasing our understanding of how diverse renal ion transport proteins are coordinated to regulate normal blood pressure levels. Observations discussed in the present work place WNK1 and WNK4 as genes involved in the genesis of essential hypertension and as potential targets for the development of antihypertensive drugs.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Humans
  • Hypertension / genetics
  • Hypertension / metabolism*
  • Intracellular Signaling Peptides and Proteins
  • Ion Transport
  • Kidney / metabolism*
  • Minor Histocompatibility Antigens
  • Nephrons / metabolism
  • Protein Serine-Threonine Kinases / genetics
  • Protein Serine-Threonine Kinases / metabolism*
  • WNK Lysine-Deficient Protein Kinase 1

Substances

  • Intracellular Signaling Peptides and Proteins
  • Minor Histocompatibility Antigens
  • Protein Serine-Threonine Kinases
  • WNK Lysine-Deficient Protein Kinase 1
  • WNK1 protein, human
  • WNK4 protein, human