Importance of solution equilibria in the directed assembly of metal chalcogenide mesostructures

J Am Chem Soc. 2008 Jul 2;130(26):8366-76. doi: 10.1021/ja800741h. Epub 2008 Jun 5.

Abstract

We describe the new nanostructured Pt/Ge/Se materials prepared from the molecular units [Ge2Se6](4-) and [GeSe4](4-) and linking Pt(2+) ions in the presence of surfactant micelles. X-ray diffraction coupled with transmission electron microscopy images reveals hexagonal pore symmetry. The solvent dependence and solution speciation of these building blocks were investigated by means of multinuclear NMR spectroscopy and by fast atom bombardment (FAB) mass spectroscopy and it is shown that rapid exchange equilibrium is reached between species like [Ge4Se10](4-), [Ge2Se6](4-), and [GeSe4](4-) in both water and formamide. This results in multiple Ge/Se anions being incorporated in the mesostructured materials which is supported by Raman and IR spectroscopic data. It is likely that the presence of multiple building units both in water and formamide solutions favors the assembly of mesostructured metal chalcogenides with good pore order. Systematic variation of both surfactant headgroup and chain length modulates the optoelectronic properties of the mesostructures. The Pt/Ge/Se materials show sharp band gap transitions in the range of 1.24-1.97 eV. Finally, the materials exhibit reversible ion-exchange properties and a marked inorganic framework flexibility that enables a contraction-expansion process in response to the exchange. The Pt/Ge/Se framework possesses a very high surface area as estimated by small-angle X-ray scattering techniques.