Forecasting relative impacts of land use on anadromous fish habitat to guide conservation planning

Ecol Appl. 2008 Mar;18(2):467-82. doi: 10.1890/07-0354.1.

Abstract

Land use change can adversely affect water quality and freshwater ecosystems, yet our ability to predict how systems will respond to different land uses, particularly rural-residential development, is limited by data availability and our understanding of biophysical thresholds. In this study, we use spatially explicit parcel-level data to examine the influence of land use (including urban, rural-residential, and vineyard) on salmon spawning substrate quality in tributaries of the Russian River in California. We develop a land use change model to forecast the probability of losses in high-quality spawning habitat and recommend priority areas for incentive-based land conservation efforts. Ordinal logistic regression results indicate that all three land use types were negatively associated with spawning substrate quality, with urban development having the largest marginal impact. For two reasons, however, forecasted rural-residential and vineyard development have much larger influences on decreasing spawning substrate quality relative to urban development. First, the land use change model estimates 10 times greater land use conversion to both rural-residential and vineyard compared to urban. Second, forecasted urban development is concentrated in the most developed watersheds, which already have poor spawning substrate quality, such that the marginal response to future urban development is less significant. To meet the goals of protecting salmonid spawning habitat and optimizing investments in salmon recovery, we suggest investing in watersheds where future rural-residential development and vineyards threaten high-quality fish habitat, rather than the most developed watersheds, where land values are higher.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animal Migration
  • Animals
  • Conservation of Natural Resources / methods*
  • Ecosystem*
  • Environmental Monitoring
  • Forecasting
  • Human Activities / trends*
  • Salmon / physiology*
  • Time Factors
  • Water Pollution / prevention & control