Adsorption and electron-induced polymerization of methyl methacrylate on Ru(1010)

J Chem Phys. 2008 May 7;128(17):174704. doi: 10.1063/1.2908821.

Abstract

The adsorption and electron irradiation of methyl methacrylate (MMA) on a Ru(1010) surface have been studied using x-ray photoelectron spectroscopy (XPS), temperature programmed desorption (TPD), and low energy ion scattering. TPD analysis indicates that a monolayer of MMA chemisorbs and dissociates on the Ru(1010) surface. The reaction products observed upon heating include H(2), CO, CO(2), and a small amount of MMA. Physisorbed multilayers of MMA desorb at temperatures around 170 K. Electron irradiation of physisorbed MMA at 140 K leads to a modification of the MMA film: The XPS spectra show an increase in thermal stability of the film with retention of the MMA structure, and indicate that electron irradiation induces polymerization. An increase in the electron bombardment fluence induces a degradation of the formed polymerized species and leads to the accumulation of carbon on the Ru surface. These results are relevant to the accumulation of carbon on surfaces of Ru films that serve as capping layers on MoSi multilayer mirrors used in extreme ultraviolet lithography.