Complex formation between the protein components of methane monooxygenase from Methylosinus trichosporium OB3b. Identification of sites of component interaction

J Biol Chem. 1991 Jan 5;266(1):540-50.

Abstract

Kinetic, spectroscopic, and chemical evidence for the formation of specific catalytically essential complexes between the three protein components of the soluble form of methane monooxygenase from Methylosinus trichosporium OB3b is reported. The effects of the concentrations of the reductase and component B on the hydroxylation activity of the reconstituted enzyme system has been numerically simulated based on a kinetic model which assumes formation of multiple high affinity complexes with the hydroxylase component during catalysis. The formation of several of these complexes has been directly demonstrated. By using EPR spectroscopy, the binding of approximately 2 mol of component B/mol of hydroxylase (subunit structure (alpha beta gamma)2) is shown to significantly change the electronic environment of the mu-(H/R)-oxo-bridged binuclear iron cluster of the hydroxylase in both the mixed valent (Fe(II).Fe(III)) and fully reduced (Fe(II).Fe(II)) states. Protein-protein complexes between the reductase and component B as well as between the reductase and hydroxylase have been shown to form by monitoring quenching of the tryptophan fluorescence spectrum of either the component B (KD approximately 0.4 microM) or hydroxylase (two binding sites, KDa approximately 10 nM, KDb approximately 8 microM). The observed KD values are in agreement with the best fit values from the kinetic simulation. Through the use of the covalent zero length cross-linking reagent 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide (EDC), the binding sites of the component B and reductase were shown to be on the hydroxylase alpha and beta subunits, respectively. The alpha and beta subunits of the hydroxylase are cross-linked by EDC suggesting that they are juxtaposed. EDC also caused the rapid loss of the ability of the monomeric component B to stimulate the hydroxylation reaction suggesting that cross-linking of reactive groups on the protein surface had occurred. This effect was inhibited by the presence of hydroxylase and was accompanied by a loss of the ability of the component B to bind to the hydroxylase. Thus, formation of a component B-hydroxylase complex is apparently required for effective catalysis linked to NADH oxidation. When present in concentrations greater than required to saturate the initial hydroxylase complex, component B inhibited both the rate of the enzymic reaction and the cross-linking of the reductase to the hydroxylase. This suggests that a second complex involving component B can form that negatively regulates catalysis by preventing formation of the reductase-hydroxylase complex.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Binding Sites
  • Electron Spin Resonance Spectroscopy
  • Electrophoresis, Polyacrylamide Gel
  • Kinetics
  • Macromolecular Substances
  • Methylococcaceae / enzymology*
  • Models, Theoretical
  • Molecular Sequence Data
  • Molecular Weight
  • Oxygenases / isolation & purification
  • Oxygenases / metabolism*
  • Spectrometry, Fluorescence

Substances

  • Macromolecular Substances
  • Oxygenases
  • methane monooxygenase