Ghrelin improves delayed gastrointestinal transit in alloxan-induced diabetic mice

World J Gastroenterol. 2008 Apr 28;14(16):2572-7. doi: 10.3748/wjg.14.2572.

Abstract

Aim: To investigate the effects of ghrelin on delayed gastrointestinal transit in alloxan-induced diabetic mice.

Methods: A diabetic mouse model was established by intraperitoneal injection with alloxan. Mice were randomized into two main groups: normal mice group and diabetic mice group treated with ghrelin at doses of 0, 20, 50, 100 and 200 mug/kg ip. Gastric emptying (GE), intestinal transit (IT), and colonic transit (CT) were studied in mice after they had a phenol red meal following injection of ghrelin. Based on the most effective ghrelin dosage, atropine was given at 1 mg/kg 15 min before the ghrelin injection for each measurement. The mice in each group were sacrificed 20 min later and their stomachs, intestines, and colons were harvested immediately. The amount of phenol red was measured. Percentages of GE, IT, and CT were calculated.

Results: Percentages of GE, IT, and CT were significantly decreased in diabetic mice as compared to control mice (22.9 +/- 1.4 vs 28.1 +/- 1.3, 33.5 +/- 1.2 vs 43.2 +/- 1.9, 29.5 +/- 1.9 vs 36.3 +/- 1.6, P < 0.05). In the diabetic mice, ghrelin improved both GE and IT, but not CT. The most effective dose of ghrelin was 100 mug/kg and atropine blocked the prokinetic effects of ghrelin on GE and IT.

Conclusion: Ghrelin accelerates delayed GE and IT but has no effect on CT in diabetic mice. Ghrelin may exert its prokinetic effects via the cholinergic pathway in the enteric nervous system, and therefore has therapeutic potential for diabetic patients with delayed upper gastrointestinal transit.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Colon / drug effects
  • Colon / physiopathology
  • Diabetes Mellitus, Experimental / physiopathology*
  • Gastric Emptying / drug effects*
  • Gastrointestinal Transit / drug effects*
  • Ghrelin / therapeutic use*
  • Intestines / drug effects
  • Intestines / physiopathology
  • Mice
  • Mice, Inbred C57BL

Substances

  • Ghrelin