Gas-phase ion chemistry of GeH(4)/B(2)H(6) mixtures

Eur J Mass Spectrom (Chichester). 2007;13(6):377-84. doi: 10.1255/ejms.902.

Abstract

The gas phase ion-molecule reactions in positively and negatively ionized germane/diborane mixtures have been studied by ion trap mass spectrometry. Reaction sequences and rate constants for the most interesting processes have been determined. In positive ionization, formation of Ge-B bonds exclusively occurs through condensation reactions of B(n)H(m)(+) ions with germane, followed by H(2) or BH(3) loss. No reactions of ions from germane with B(2)H(6) were observed under the experimental conditions used here. In negative ionization, the Ge(n)H(m)(-) (n = 1, 2) ion families react with diborane to yield the Ge(n)B(p)H(q)(-) (p = 1, 2) ions, again via dehydrogenation and BH(3) loss, while diborane anions proved to be unreactive. In both positive and negative ionization, Ge-B ions reach appreciable abundances. The present results afford fundamental information about the intrinsic reactivity of gas-phase ions and provide valuable indications about the first nucleation steps ultimately leading to amorphous Ge and B-doped semiconductor materials by chemical vapor deposition methods.