Principles of demineralization: modern strategies for the isolation of organic frameworks. Part I. Common definitions and history

Micron. 2008 Dec;39(8):1062-91. doi: 10.1016/j.micron.2008.02.004. Epub 2008 Feb 15.

Abstract

In contrast to biomineralization phenomena, that are among the most widely studied topics in modern material and earth science and biomedicine, much less is systematized on modern view of demineralization. Biomineralized structures and tissues are composites, containing a biologically produced organic matrix and nano- or microscale amorphous or crystalline minerals. Demineralization is the process of removing the inorganic part, or the biominerals, that takes place in nature via either physiological or pathological pathways in organisms. In vitro demineralization processes, used to obtain mechanistic information, consist in the isolation of the mineral phase of the composite biomaterials from the organic matrix. Physiological and pathological demineralization include, for example, bone resorption mediated by osteoclasts. Bioerosion, a more general term for the process of deterioration of the composite biomaterials represents chemical deterioration of the organic and mineral phase followed by biological attack of the composite by microorganisms and enzymes. Bioerosional organisms are represented by endolithic cyanobacteria, fungi, algae, plants, sponges, phoronids and polychaetes, mollusks, fish and echinoids. In the history of demineralization studies, the driving force was based on problems of human health, mostly dental caries. In this paper we summarize and integrate a number of events, discoveries, milestone papers and books on different aspect of demineralization during the last 400 years. Overall, demineralization is a rapidly growing and challenging aspect of various scientific disciplines such as astrobiology, paleoclimatology, geomedicine, archaeology, geobiology, dentistry, histology, biotechnology, and others to mention just a few.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Calcification, Physiologic / physiology*
  • Humans
  • Minerals / chemistry
  • Minerals / metabolism*

Substances

  • Minerals