On the computation and contribution of conductivity in molecular ionic liquids

J Chem Phys. 2008 Apr 7;128(13):134501. doi: 10.1063/1.2868752.

Abstract

In this study we present the results of the molecular dynamics simulation of the ionic liquids: 1-butyl-3-methyl-imidazolium tetrafluoroborate and trifluoromethylacetate as well as 1-ethyl-3-methyl-imidazolium dicyanamide. Ionic liquids are characterized by both a molecular dipole moment and a net charge. Thus, in contrast to a solution of simple ions in a (non-) polar solvent, rotational and translational effects influence the very same molecule. This study works out the theoretical framework necessary to compute the conductivity spectrum and its low frequency limit of ionic liquids. Merging these computed conductivity spectra with previous simulation results on the dielectric spectra of ionic liquids yields the spectrum of the generalized dielectric constant, which may be compared to experiments. This spectrum was calculated for the three ionic liquids over six orders of magnitude in frequency ranging from 10 MHz to 50 THz. The role of rotation and translation and their coupling term on the generalized dielectric constant is discussed in detail with a special emphasis on the zero-frequency limit. Thereby, the frequency dependence of the cross correlation between the collective rotational dipole moment and the current is discussed.

MeSH terms

  • Computer Simulation
  • Electric Conductivity*
  • Ionic Liquids / chemistry*
  • Models, Chemical*
  • Models, Molecular*
  • Molecular Conformation

Substances

  • Ionic Liquids