Nonlinear source-filter coupling in phonation: vocal exercises

J Acoust Soc Am. 2008 Apr;123(4):1902-15. doi: 10.1121/1.2832339.

Abstract

Nonlinear source-filter coupling has been demonstrated in computer simulations, in excised larynx experiments, and in physical models, but not in a consistent and unequivocal way in natural human phonations. Eighteen subjects (nine adult males and nine adult females) performed three vocal exercises that represented a combination of various fundamental frequency and formant glides. The goal of this study was to pinpoint the proportion of source instabilities that are due to nonlinear source-tract coupling. It was hypothesized that vocal fold vibration is maximally destabilized when F(0) crosses F(1), where the acoustic load changes dramatically. A companion paper provides the theoretical underpinnings. Expected manifestations of a source-filter interaction were sudden frequency jumps, subharmonic generation, or chaotic vocal fold vibrations that coincide with F(0)-F(1) crossovers. Results indicated that the bifurcations occur more often in phonations with F(0)-F(1) crossovers, suggesting that nonlinear source-filter coupling is partly responsible for source instabilities. Furthermore it was observed that male subjects show more bifurcations in phonations with F(0)-F(1) crossovers, presumably because in normal speech they are less likely to encounter these crossovers as much as females and hence have less practice in suppressing unwanted instabilities.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Female
  • Humans
  • Male
  • Middle Aged
  • Phonation / physiology*
  • Vibration
  • Vocal Cords / physiology*