SAR and efficiency evaluation of a 900 MHz waveguide chamber for cell exposure

Bioelectromagnetics. 2008 Sep;29(6):429-38. doi: 10.1002/bem.20405.

Abstract

In this work we present the results of numerical and experimental dosimetry carried out for an in vitro exposure device to irradiate sample groups at 900 MHz. The cells are kept in 8 and 15 ml cell cultures, contained, respectively in T25 and T75 rectangular flasks. The dosimetric assessment of the distribution of the specific absorption rate (SAR) is performed for both the bottom of the flask and the whole volume of the sample to provide results for experiments on either the cell layer or the cell suspension. The irradiating chamber is a rectangular waveguide (WG). Different configurations are considered to assess the optimum orientation and positioning of the cell cultures inside the WG. The system performance is optimal when the electric field is parallel to the sample and the WG is terminated by a matched load. In this condition two 15 or four 8 ml cells cultures can be exposed. The efficiency (ratio between the power absorbed by the sample and the incident power) and the non-uniformity degree (ratio between the standard deviation of SAR values and the average SAR over the sample) are calculated and successfully verified through measurements of the scattering parameters and local temperature increases. In the chosen exposure configuration, the efficiency is 0.40 and the non-uniformity degree is 39% for the 15 ml samples. For the 8 ml samples, the efficiency is 0.19 and a low non-uniformity degree (15%) is found.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Culture Techniques / instrumentation*
  • Cell Physiological Phenomena / radiation effects*
  • Computer Simulation
  • Equipment Design
  • Equipment Failure Analysis
  • Microwaves*
  • Models, Theoretical*
  • Radiation Dosage
  • Radiometry / methods*