Combining growth factor and stem cell therapy for amyotrophic lateral sclerosis

Trends Neurosci. 2008 Apr;31(4):192-8. doi: 10.1016/j.tins.2008.01.006. Epub 2008 Mar 10.

Abstract

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease where motor neurons within the brain and spinal cord are lost, leading to paralysis and death. Certain growth factors should, in principle, be able to protect dying motor neurons. However, targeted delivery to the spinal cord or brain has been a constant problem. There is also accumulating evidence that glial cells might play a crucial role in maintaining motor neuron function and survival in ALS. Stem cells isolated and expanded in culture can be modified to release growth factors and generate glial cells following transplantation into the spinal cord or brain. As such, they might be able to both detoxify the local environment around dying motor neurons and deliver trophic factors. Here we examine the feasibility of translating these findings into new treatments for ALS patients.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Amyotrophic Lateral Sclerosis / therapy*
  • Animals
  • Genetic Therapy
  • Humans
  • Intercellular Signaling Peptides and Proteins / therapeutic use*
  • Neurons / transplantation*
  • Stem Cell Transplantation*

Substances

  • Intercellular Signaling Peptides and Proteins